DIANA
Finite Element Analysis

DIANA Documentation

Release 10.4


DIANA FEA BV

DIANA – Finite Element Analysis
DIANA Documentation release 10.4
Edited by: Denise Ferreira and Jonna Manie
Published by:
DIANA FEA bv
Thijsseweg 11, 2629 JA Delft, The Netherlands.
Phone: +31 88 34262 00
Fax: +31 88 34262 99
E-mail: info@dianafea.com
Web page: https://dianafea.com

Trademarks.
Diana is a registered trademark of DIANA FEA bv. FemGV, FemGen, and FemView are trademarks of DIANA FEA bv. FX+ is a registered trademark of Midas IT Corporation. Windows is a registered trademark of Microsoft Corporation. Adobe Reader is a registered trademark of Adobe Systems, Inc. AutoCAD is a registered trademark of Autodesk Inc. DXF is a trademark of Autodesk Inc. IGES is a trademark of IGES Data Analysis, Inc. Parasolid is software owned by Siemens Product Lifecycle Management Software Inc.© 1986-2020. The X Window System is a trademark of M.I.T. unix is a registered trademark of UNIX Systems Laboratories, Inc. Intel is a registered trademark of Intel Corporation. Nastran is a registered trademark of the National Aeronautics and Space Administration. All other brand names, product names or trademarks belong to their respective holders.

Contains Autodesk® RealDWG by Autodesk, Inc. All rights reserved.
Copyright © 1998-2009 Autodesk, Inc. All rights reserved.

First edition, April 29, 2020.
Copyright © 2020 by DIANA FEA bv, all rights reserved. No part of this publication may be reproduced in any form by print, photoprint, microfilm or any other means, without the prior written permission of the publisher.

The information in this document is subjected to change without notice and should not be construed as a commitment by DIANA FEA bv. DIANA FEA bv assumes no responsibility for any errors that may appear in this document.

The Diana system is the sole property of DIANA FEA bv. Software materials made available are solely for use at a single site; they are not to be distributed to others without prior written permission of DIANA FEA bv.

This document was prepared with the LATE X Document Preparation System.

Release Quality Process
Preface
Glossary of Symbols
Contents
I  Introduction
1 DIANA
2 General Concepts of The Finite Element Method
 2.1 Global Formulation
 2.2 Discretization to Elements
 2.3 Assembling the Load Vector
 2.4 Equilibrium
3 Field of Application
 3.1 Material Models
 3.2 Solvers and Solution Procedures
 3.3 Analysis Applications
4 Diana Interactive Environment
 4.1 Overview
 4.2 Work Flow
 4.3 Window Management
 4.4 Common Keyboard Shortcuts
 4.5 File Management
 4.6 Export Models
II  Modeling
5 Units
 5.1 Special Cases
6 Model Definitions
 6.1 Directions
7 Geometry
 7.1 Work Plane
 7.2 Geometry Components
 7.3 Operations
 7.4 Sets of Embedded Entities
 7.5 Embedding Options
 7.6 Property Assignment
 7.7 Functions
 7.8 Connections
 7.9 Tyings
 7.10 Supports
 7.11 Loads
 7.12 Water Levels
 7.13 Model Organization
 7.14 Import Files
 7.15 Healing
8 Loads
 8.1 Nodal Loads
 8.2 Element Vertex Loads
 8.3 Distributed Loads
 8.4 Projected Loads
 8.5 Hydrostatic Pressure Loads
 8.6 Prescribed Strain Loads
 8.7 Element Prestress Loads
 8.8 Incremental Temperature and Concentration Loads
 8.9 Pore pressure and Hydraulic Heads
 8.10 Prestress in Reinforcements
 8.11 Post-tensioning Load in Reinforcements
 8.12 Deadweight Loads
 8.13 Equivalent Acceleration Loads
 8.14 Centrifugal Loads
 8.15 Base Excitation
 8.16 Fixed Displacement or Deformation Loads
 8.17 Quadrilateral Force Loads
 8.18 Mobile Loads
 8.19 Wind and Water Loads
 8.20 Modal Pushover Load
 8.21 Prescribed Velocity Loads
 8.22 Prescribed Acceleration Loads
 8.23 Load Sets
 8.24 Load Combinations
 8.25 Influence Fields
 8.26 Initial Fields
 8.27 Time-Load Diagram
 8.28 Frequency-Load Diagram
9 Connections
 9.1 Nodal Variables
 9.2 Constraints and Supports
 9.3 Linear Dependencies or Tyings
 9.4 Interfaces
 9.5 Potential Flow Constraints
10 Mesh
 10.1 General Properties
 10.2 Incremental Meshing
 10.3 Mapped Meshing
 10.4 Mirroring
III  Elements
11 Overview
 11.1 Two-dimensional Body Elements
 11.2 Three-dimensional Bodies or Solids
 11.3 Plates and Shells
 11.4 Trusses and Cables
 11.5 Beams
 11.6 Structural Interface Elements
 11.7 Composed Elements
 11.8 Spring and Mass Elements
 11.9 Reinforcements
 11.10 Pile Foundations
 11.11 Sheet Pile Walls
 11.12 Anchors
12 General Concepts
 12.1 Element Polynomials and Integration
 12.2 Assumed Strain Concepts
 12.3 Orthotropic Geometry
13 Regular Truss Elements
 13.1 Axes
 13.2 Variables
 13.3 Cross-section
 13.4 Spacing
 13.5 Loading
 13.6 Element Types
14 Enhanched Truss Elements
 14.1 Axes
 14.2 Variables
 14.3 Cross-section
 14.4 Spacing
 14.5 Loading
 14.6 Element Types
15 Beam Elements
 15.1 Axes
 15.2 Variables
 15.3 Cross-section Definition
 15.4 Shape Factors
 15.5 Additional Distributed Dynamic Mass
 15.6 Integration Schemes
 15.7 Node Conditions
 15.8 Loading
 15.9 Mass Correction
 15.10 Element Types
16 Plane Stress Elements
 16.1 Axes
 16.2 Axial Coordinate System
 16.3 Variables
 16.4 Thickness
 16.5 Integration Schemes
 16.6 Assumed Strain
 16.7 Loading
 16.8 Element Types
17 Plane Strain Elements
 17.1 Axes
 17.2 Axial Coordinate System
 17.3 Variables
 17.4 Integration Schemes
 17.5 Loading
 17.6 Element Types
18 Infinite Shells
 18.1 Axes
 18.2 Variables
 18.3 Thickness
 18.4 Shape
 18.5 Integration Schemes
 18.6 Shear Reduction
 18.7 Loading
 18.8 Element Types
19 Infinite Flat Shells
 19.1 Axes
 19.2 Variables
 19.3 Equivalent Thickness
 19.4 Shear Reduction
 19.5 Integration Schemes
 19.6 Loading
 19.7 Element Types
20 Complete Plane Strain Elements
 20.1 Variables
 20.2 Loading
 20.3 Element Types
21 Axisymmetric Elements
 21.1 Axes
 21.2 Variables
 21.3 Integration Schemes
 21.4 Loading
 21.5 Element Types
22 Shells of Revolution
 22.1 Axes
 22.2 Variables
 22.3 Thickness
 22.4 Shape
 22.5 Integration Schemes
 22.6 Shear Reduction
 22.7 Element Types
23 Plate Bending Elements
 23.1 Axes
 23.2 Variables
 23.3 Thickness
 23.4 Integration Schemes
 23.5 Shear Reduction
 23.6 Geometry Factors
 23.7 Loading
 23.8 Element Types
24 Flat Shell Elements
 24.1 Element Axes
 24.2 Variables
 24.3 Thickness
 24.4 Integration Schemes
 24.5 Shear Reduction
 24.6 Geometry Factors
 24.7 Direct Input of Stiffness Matrices
 24.8 Laminated Composite Material
 24.9 Loading
 24.10 Elements with Drilling Rotation
 24.11 Element Types
25 Spline Elements
 25.1 Variables
 25.2 Thickness
 25.3 Numerical Integration
 25.4 Material Property Restrictions
 25.5 Special Supports
 25.6 Loading
 25.7 Element Types
26 Curved Shell Elements
 26.1 Axes
 26.2 Variables
 26.3 Thickness
 26.4 Shape
 26.5 Eccentric Connection
 26.6 Integration Schemes
 26.7 Shear Reduction
 26.8 Loading
 26.9 Additional Distributed Dynamic Mass
 26.10 Regular Elements with Drilling Rotation
 26.11 Layered Elements
 26.12 Layered Elements with Drilling Rotation
 26.13 Maximum Distance Between Cracks
 26.14 Element Types
27 Solid Elements
 27.1 Axes
 27.2 Axial Coordinate System
 27.3 Variables
 27.4 Integration Schemes
 27.5 Loading
 27.6 Element Types
28 Rubber Elements
 28.1 Element Types
29 Spring and Dashpot Elements
 29.1 Discrete Spring/Dashpot Elements
 29.2 Nodal Spring Element
 29.3 Base Spring Elements
 29.4 Element Types
30 Mass Elements
 30.1 Point Mass/Damping Elements
 30.2 Distributed Translational Mass Elements
 30.3 Element Types
31 Free-field Elements
 31.1 Axes
 31.2 Geometry
 31.3 Displacements, Forces and Stresses
 31.4 Element Types
32 Absorbing Boundary Elements
 32.1 Axes
 32.2 Variables
 32.3 Spring Characteristics
 32.4 Dashpot Characteristics
 32.5 Integration Schemes
 32.6 Element Types
33 Crack Tip Elements
 33.1 Crack Propagation Direction
 33.2 Mesh Adaptation
 33.3 Element Types
34 Composed Elements
 34.1 Axes
 34.2 Variables
 34.3 Shape and Thickness
 34.4 Maximum Distance Between Cracks
 34.5 Element Types
 34.6 Output Results
35 Structural Interface Elements
 35.1 Element Axes
 35.2 Geometry
 35.3 Displacements, Relative Displacements and Tractions
 35.4 Integration Schemes
 35.5 Initial Stress
 35.6 Geometrical Nonlinear Analysis
 35.7 Element Types
36 Contact Elements
 36.1 Contact Algorithm
 36.2 Variables
 36.3 Contact Sets
 36.4 Element Types
37 Fluid-Structure Interface Elements
 37.1 Normal Direction
 37.2 Variables
 37.3 Pressure Supports
 37.4 Element Types
38 Reinforcements
 38.1 Embedded Reinforcements
 38.2 Bond-Slip Reinforcements
39 Pile Foundations
 39.1 Material and Geometry Parameters
40 Sheet Pile Walls
 40.1 Cross-section
 40.2 Wall Geometry
 40.3 Axes
 40.4 Shapes
 40.5 Connectivity
 40.6 Tip
 40.7 Installation
41 Anchors
 41.1 Material and Geometry Parameters
 41.2 Loading
 41.3 Element Types
42 Potential Flow Elements
 42.1 Boundary Conditions
 42.2 Integration Schemes
 42.3 Two-dimensional Models
 42.4 Axisymmetric Models
 42.5 Three-dimensional Models
 42.6 Heat Flow and General Potential Flow Elements
 42.7 Cooling Pipes
 42.8 Groundwater Flow Elements
 42.9 Lubrication Elements
 42.10 Cross-section Elements
 42.11 Interface Elements
43 Mixture Elements
 43.1 Continuum Elements
 43.2 Interface Elements
IV  Materials
44 Overview
 44.1 Material Models for Structural Analysis
 44.2 Material Models for Potential Flow Analysis
45 General Concepts
 45.1 Mass
 45.2 Damping
 45.3 Elasticity
 45.4 Plasticity
 45.5 Volumetric Locking
 45.6 Viscoelasticity
 45.7 Viscoplasticity
 45.8 Shrinkage
 45.9 Swelling
 45.10 Ambient and Time Dependency
 45.11 Corrosion
 45.12 Bonding
 45.13 Initial Stress
 45.14 Drainage
 45.15 Pore Pressure Effectivity
 45.16 Cracking
 45.17 Crack Index
 45.18 Structural Interfaces
 45.19 Wöhler Diagrams
 45.20 Failure Criteria
 45.21 Biaxial Failure Envelope
 45.22 Shear Capacity and Hydrostatic Pressure Capacity
 45.23 Safety Factors
46 Concrete and Masonry
 46.1 Linear Isotropic Elasticity
 46.2 Orthotropic Elasticity
 46.3 Direct Stiffness Matrix for Flat Shells
 46.4 Multi-Directional Fixed Crack Model
 46.5 Total Strain Crack Models
 46.6 Mohr-Coulomb and Drucker-Prager Plasticity
 46.7 Crack and Plasticity
 46.8 Rankine Principal Stress Model
 46.9 Rankine-Hill Anisotropy
 46.10 Maekawa-Fukuura Concrete Model
 46.11 Kotsovos Concrete Model
 46.12 Engineering Masonry Model
 46.13 Generalized Stress-Strain Relations
47 Soil and Rock
 47.1 Linear Elastic Isotropic
 47.2 Orthotropic Elasticty
 47.3 Von Mises and Tresca Plasticity
 47.4 Mohr-Coulomb and Drucker-Prager Plasticity
 47.5 Hardening Soil Model/Modified Mohr-Coulomb Engineering Input
 47.6 Hardening Soil Model/Modified Mohr-Coulomb Plasticity
 47.7 Modified Cam-Clay Plasticity
 47.8 Modified UBC Sand Model
 47.9 Jardine Small Strain
 47.10 Hoek-Brown Plasticity
 47.11 Jointed Rock Mass
 47.12 Hardin-Drnevich and Ramberg-Osgood Models
 47.13 Duncan-Chang Hyperbolic Model
 47.14 D-Min Model
 47.15 Diagram Shear Stress/Shear Strain
 47.16 Diagram Shear Stiffness Reduction/Shear Strain
 47.17 General Quadratic/Hyperbolic Shear Model
 47.18 Salt Creep Model
 47.19 Liquefaction Models
 47.20 Geotextile - Simple Stress Models
 47.21 Perfectly Matched Layer
48 Steel
 48.1 Linear Elastic Isotropic
 48.2 Orthotropic Elasticity
 48.3 Fraction Model
 48.4 Direct Stiffness Matrix for Shells
 48.5 Von Mises and Tresca Plasticity
 48.6 Modified Two-Surface Model
49 Composites and Rubber
 49.1 Linear Elastic Isotropic
 49.2 Orthotropic Elasticity
 49.3 Hill and Hoffman Anisotropy
 49.4 Rankine-Hill Anisotropy
 49.5 Fraction Model
 49.6 ABD Matrix
 49.7 Hyperelasticity
50 Mass Elements
 50.1 Concentrated Mass
 50.2 Concentrated Mass Moments of Rotational Inertia
 50.3 Distributed Mass
51 Springs and Dashpots
 51.1 Stiffness
 51.2 Damping
52 Structural Interfaces
 52.1 Linear Elasticity
 52.2 Nonlinear Elasticity
 52.3 Discrete Cracking
 52.4 Crack Dilatancy
 52.5 Bond-slip
 52.6 Coulomb Friction
 52.7 Nonlinear Elastic Friction
 52.8 Combined Cracking-Shearing-Crushing
 52.9 Janssen Model
 52.10 Contact
 52.11 Fluid-Structure Interaction
53 Embedded Reinforcements
 53.1 Uniaxial Linear Elasticity
 53.2 Uniaxial Nonlinear Elasticity
 53.3 Von Mises
 53.4 Fraction Model
 53.5 Menegotto-Pinto Plasticity
 53.6 Monti-Nuti Plasticity
 53.7 Dodd-Restrepo Model
54 Bond-slip Reinforcements
 54.1 Bond-slip Reinforcement Bar
 54.2 Bond-slip Reinforcement Interface
 54.3 Bond-slip Reinforcement Anchors
55 Pile Foundations
 55.1 Piles
 55.2 Pile Shaft-Soil Interface
 55.3 Pile Tip
56 Sheet Pile Walls
 56.1 Wall Properties
 56.2 Interface Properties
 56.3 Tip Properties
57 Anchors
 57.1 Anchor Properties
 57.2 Interface Properties
58 Heat Flow and General Potential Flow
 58.1 Conductivity and Capacity
 58.2 Boundary Elements
 58.3 Interface Elements
 58.4 Cooling Pipe Elements
 58.5 Hydration Heat
 58.6 Solidification or Evaporation
 58.7 Convective Field
59 Groundwater Flow
 59.1 Regional Groundwater Flow
 59.2 Detailed Groundwater Flow
60 Reynolds Flow - Lubrication
61 Soil-Pore Fluid Properties
 61.1 Structural Elements
 61.2 Staggered Analysis
 61.3 Mixture Analysis
62 Design Checking Analysis
63 Model Codes
 63.1 Concrete
 63.2 Steel
 63.3 Embedded Reinforcements
 63.4 Bond-slip Reinforcements
V  Analyses
64 Overview
65 General Concepts
 65.1 Model Evaluation
 65.2 Dynamic Analysis
 65.3 Phased Analysis
 65.4 Initial State Evaluation
 65.5 Time Steps
 65.6 Load Steps
 65.7 Fluid-Structure Interaction Analysis
 65.8 Steady-state Potential Flow Analysis
 65.9 Transient Potential Flow Analysis
 65.10 Staggered Flow-Stress Analysis
 65.11 Coupled Flow-Stress Analysis
66 Solution Procedures for Sparse Linear Systems
 66.1 Direct Solution Methods
 66.2 Iterative Solution Methods
 66.3 Substructuring
67 Structural Linear Static Analysis
 67.1 Regular Static Analysis
 67.2 Fatigue Failure Analysis
 67.3 Primary Output Results
68 Design Checking Analysis
 68.1 Introduction
 68.2 Specific Model Properties
 68.3 Analysis Procedure
 68.4 Parameters Convention
 68.5 Eurocode 2 EN 1992-1-1 Definitions
 68.6 Linear Analysis
 68.7 Average Results and Capacities
 68.8 Shifting Moments
 68.9 Capacity Prestress Loading
 68.10 Load Case Combinations and Envelopes
 68.11 Normative Loading
 68.12 Reinforcement Grid Design Check
 68.13 Cross-section Design Checking Analysis
 68.14 Guidelines
69 Stiffness Adaptation Analysis
 69.1 Input for Stiffness Adaptation Analysis
 69.2 Guidelines
 69.3 Primary Output Results
70 Structural Eigenvalue Analysis
 70.1 Standard Eigenproblem
 70.2 Generalized Eigenproblem
 70.3 Solution Techniques
 70.4 Rayleigh Damping Coefficients Calculation
 70.5 Primary Output Results
71 Structural Modal Frequency Response Analysis
 71.1 Frequency Response Analysis
 71.2 Modal Superposition
 71.3 Analysis Results
 71.4 Primary Output Results
72 Structural Direct Frequency Response Analysis
 72.1 Frequency Response Analysis
 72.2 Direct Solution
 72.3 Analysis Results
 72.4 Primary Output Results
73 Structural Response Spectrum Analysis
 73.1 Response Spectrum Analysis
 73.2 Guidelines
 73.3 Primary Output Results
74 Hybrid Frequency Time Domain Analysis
 74.1 Hybrid Frequency Time Domain Method
 74.2 Finite Element Equations
 74.3 Solution Procedure Sequence
 74.4 Fourier Transform Period
 74.5 Time Segmentation
 74.6 Decaying Functions
 74.7 Convergence Criteria
 74.8 Guidelines
 74.9 Primary Output Results
75 Structural Nonlinear Analysis
 75.1 Incremental-Iterative Solution Procedures for Nonlinear Systems
 75.2 Geometric Nonlinearity
 75.3 Logging
 75.4 Guidelines
 75.5 Primary Output Results
76 Strength Reduction Method
 76.1 Iterative Procedure for Factor of Safety
 76.2 Nonlinear Analysis at Each Iteration
 76.3 Guidelines
 76.4 Primary Output Results
77 Engineering Liquefaction Analysis
 77.1 Guidelines
 77.2 Primary Output Results
78 Engineering Creep Analysis
 78.1 Guidelines
 78.2 Primary Output Results
79 Structural Stability Analysis
 79.1 Euler Stability Analysis
 79.2 Imperfections
 79.3 Postbuckling Analysis
 79.4 Extensions of Postbuckling Analysis
 79.5 Effect of Imperfection
 79.6 Guidelines
 79.7 Primary Output Results
80 Nonlinear Vibration Analysis
 80.1 Perturbation Method
 80.2 Finite Element Implementation
 80.3 Guidelines
 80.4 Primary Output Results
81 Heat Flow and General Potential Flow Analysis
 81.1 General Concepts
 81.2 Convection-Diffusion Equation
 81.3 Boundary Conditions
 81.4 Finite Element Formulation
 81.5 Analysis Results
 81.6 Primary Output Results
82 Groundwater Flow Analysis
 82.1 Detailed Groundwater Flow
 82.2 Regional Groundwater Flow
 82.3 Analysis Results
 82.4 Primary Output Results
83 Geomechanical Staged Construction Analysis
 83.1 Primary Output Results
84 Fracture Mechanics Analysis
 84.1 Stress Intensity Factor
 84.2 Energy Release Rate
85 Reynolds Flow – Lubrication Analysis
 85.1 Output
86 Beam Cross-section Analysis
 86.1 Meshing
 86.2 Elastic Properties
 86.3 Right-hand side Nodal Flux Vectors
 86.4 Analysis Results
 86.5 Primary Output Results
87 Mixture Analysis
 87.1 Basic Equations and Assumptions
 87.2 Finite Element Equations
VI  Results
88 General Concepts
 88.1 Output Selection
 88.2 Model Selection
 88.3 Step Selection
 88.4 Frequency Selection
 88.5 Modes Selection
 88.6 Boundary Selection
 88.7 Loads and Extreme Values
 88.8 Envelope Loads
 88.9 Unity Check
 88.10 Correlation Factors for Complete Quadratic Combination (CQC)
 88.11 Eigenvalue Related Results
89 Displacements
 89.1 Structural Displacements
 89.2 Eigenmodes
 89.3 Nonlinear Vibration Analysis Displacement Results
 89.4 Structural Stability Analysis Displacement Results
 89.5 Nodal Pressure Potentials from Mixture Analyses
90 Velocities
 90.1 Structural Velocities
 90.2 Nodal Pressure Potentials from Mixture Analyses
91 Accelerations
 91.1 Structural Accelerations
 91.2 Nodal Pressure Potentials from Mixture Analyses
92 Strains
 92.1 Element Strains
 92.2 Green-Lagrange Strains
 92.3 Deformations and Curvatures
 92.4 Relative Displacements of Interface Elements
 92.5 Distributed Seismic Moment
 92.6 Void Ratio
 92.7 Availability for Element Types
93 Stresses
 93.1 Element Stresses
 93.2 Cauchy Stresses
 93.3 Piola-Kirchhoff Stresses
 93.4 Forces
 93.5 Moments
 93.6 Tractions
 93.7 Stress Gradients in Reinforcement Bars
 93.8 Shear Stress in Reinforcement Mother Element Connection
 93.9 User-defined Derived Results for Beam Elements
 93.10 User-defined Derived Results for Plates and Shells
 93.11 Availability for Element Types
94 Status Parameters
 94.1 Plasticity Status
 94.2 Crack Status
 94.3 Damage Index
 94.4 Normalized Cumulative Energy
 94.5 Specific Kinetic Energy
 94.6 Specific Stress Energy
 94.7 Specific Pressure Energy
 94.8 Specific Gravitational Energy
 94.9 Liquefaction Status
 94.10 Contact Status
 94.11 Total Strain Crack Model Status
 94.12 Kotsovos Concrete Model Status
 94.13 Engineering Masonry Model Status
 94.14 Linearized Element Status
 94.15 Change of Thickness
 94.16 User-supplied Material Status
95 Forces
 95.1 Nodal Forces
 95.2 Nodal Discharges
96 Nodal Element Forces
97 Element Forces
98 Model Parameters
 98.1 Availability for Element Types
99 Linear Elastic Fracture Mechanics Parameters
100 Fatigue Failure Output
101 Temperatures
 101.1 Element Temperatures from Structural Analyses
 101.2 Nodal Temperatures from Heat Flow Analyses
102 Concentrations
103 Maturities
104 Degrees of Reaction
105 Equivalent Age
106 Fluxes
 106.1 Heat Flow and General Potential Flow Analysis
 106.2 Groundwater Flow Analysis
 106.3 Reynolds Flow – Lubrication Analysis
107 Flows
 107.1 Heat Flows
 107.2 Groundwater Flows
108 Internal Fluid Temperatures
109 Hydraulic Heads and Gradients
 109.1 Hydraulic Heads
 109.2 Hydraulic Gradients
110 Pore Pressures
 110.1 Groundwater Flow Analysis
 110.2 Structural Nonlinear Analysis
 110.3 Mixture Analysis
111 Dynamic Pressures
112 Nodal Pressures
113 Saturation
114 Darcy Fluxes
115 Shear Stresses
VII  Appendices
A Available Element Types
B Script Commands
 B.1 Script Commands for Geometry Definition
 B.2 Model Definition and Analysis
C Running a Batch Analysis Job
 C.1 Running DIANA
 C.2 Input Data File
 C.3 Performing the Analysis
D Batch Syntax Notation and Conventions
 D.1 General Aspects
 D.2 Batch Input Data Format
 D.3 Batch Command Language
E Batch Syntax Reference for Modeling
 E.1 Units
 E.2 Model Definitions
 E.3 Directions
 E.4 Group Specification
 E.5 Node Coordinates
 E.6 Spatial Functions
 E.7 Loads
 E.8 Connections
 E.9 Initial Fields
 E.10 Water Levels
F Batch Syntax Reference for Elements
 F.1 Mesh Topology and Property Assignment
 F.2 Element Geometry Properties
 F.3 Special Element Data
 F.4 Element Boundaries
 F.5 Regular Truss Elements
 F.6 Enhanced Truss Elements
 F.7 Beam Elements
 F.8 Plane Stress Elements
 F.9 Plane Strain Elements
 F.10 Infinite Shells
 F.11 Infinite Flat Shell Elements
 F.12 Complete Plane Strain Elements
 F.13 Axisymmetric Elements
 F.14 Shells of Revolution
 F.15 Plate Bending Elements
 F.16 Flat Shell Elements
 F.17 Spline Elements
 F.18 Curved Shell Elements
 F.19 Solid Elements
 F.20 Rubber Elements
 F.21 Spring and Dashpot Elements
 F.22 Mass Elements
 F.23 Free-field Elements
 F.24 Absorbing Boundary Elements
 F.25 Crack Tip Elements
 F.26 Composed Elements
 F.27 Structural Interface Elements
 F.28 Contact Elements
 F.29 Fluid-Structure Interface Elements
 F.30 Reinforcements
 F.31 Pile Foundations
 F.32 Potential Flow Elements
G Batch Syntax Reference for Materials
 G.1 Material Properties Input
 G.2 Mass
 G.3 Damping
 G.4 Elasticity
 G.5 Plasticity
 G.6 Viscoelasticity
 G.7 Viscoplasticity
 G.8 Shrinkage
 G.9 Swelling
 G.10 Ambient Time Dependency
 G.11 Corrosion
 G.12 Bonding
 G.13 Initial Stress Ratio
 G.14 Drainage
 G.15 Pore Pressure Effectivity
 G.16 Crack Bandwidth
 G.17 Crack Index
 G.18 Wöhler Diagrams
 G.19 Christensen Failure Criterion
 G.20 Composite Failure Criteria
 G.21 Biaxial Failure Envelope
 G.22 Shear Capacity and Hydrostatic Pressure Capacity
 G.23 Safety Factors
 G.24 Tresca or Von Mises Plasticity
 G.25 Von Mises Plasticity for Embedded Reinforcements
 G.26 Von Mises Plasticity for Bond-slip Reinforcements
 G.27 Mohr-Coulomb or Drucker-Prager Plasticity
 G.28 Rankine Principal Stress
 G.29 Modified Cam-Clay Plasticity
 G.30 Hardening Soil Model/Modified Mohr-Coulomb Plasticity
 G.31 Hardening Soil Model/Modified Mohr-Coulomb Engineering Input
 G.32 Modified UBC Sand Model
 G.33 Hoek-Brown Plasticity
 G.34 Fraction Model
 G.35 Modified Two-Surface Model
 G.36 Menegotto-Pinto Plasticity
 G.37 Monti-Nuti Plasticity
 G.38 Dodd-Restrepo Plasticity
 G.39 Hill and Hoffmann Anisotropy
 G.40 Rankine-Hill - Anisotropy
 G.41 Jointed Rock Mass
 G.42 Jardine Small Strain
 G.43 Multi-Directional Fixed Crack Model
 G.44 Total Strain Crack Models
 G.45 Maekawa-Fukuura Concrete Model
 G.46 Kotsovos Concrete Model
 G.47 Engineering Masonry Model
 G.48 Generalized Stress-Strain Relations
 G.49 Hardin-Drnevich and Ramberg-Osgood Models
 G.50 Duncan-Chang Hyperbolic Model
 G.51 D-Min Model
 G.52 Diagram Shear Stress/Shear Strain
 G.53 Diagram Shear Stiffness Reduction/Shear Strain
 G.54 General Quadratic/Hyperbolic shear model
 G.55 Salt Creep Model
 G.56 Geotextile - Simple Stress Models
 G.57 Liquefaction Models
 G.58 Perfectly Matched Layer
 G.59 Hyperelasticity
 G.60 Springs and Dashpots
 G.61 Linear Elasticity for Structural Interfaces
 G.62 Nonlinear Elasticity for Structural Interfaces
 G.63 Discrete Cracking
 G.64 Crack Dilatancy
 G.65 Bond-slip
 G.66 Coulomb Friction
 G.67 Nonlinear Elastic Friction
 G.68 Combined Cracking-Shearing-Crushing
 G.69 Janssen Model
 G.70 User-supplied Subroutine for Structural Interfaces
 G.71 Contact
 G.72 Fluid-Structure Interaction
 G.73 Bond-slip Reinforcements
 G.74 Pile Foundations
 G.75 Heat flow and General Potential Flow
 G.76 Groundwater Flow
 G.77 Reynolds Flow – Lubrication
 G.78 Soil-Pore Fluid Properties
 G.79 Design Checking
 G.80 Model Codes
H Batch Syntax Reference for Analysis Procedures
 H.1 Control Commands
 H.2 FILOS File Maintenance
 H.3 Reading or Remaking Input Data
 H.4 Element Evaluation
 H.5 Elements Assembly
 H.6 Solve System of Equations
 H.7 Phased Analysis
 H.8 Structural Linear Static Analysis
 H.9 Design Checking Analysis
 H.10 Stiffness Adaptation Analysis
 H.11 Structural Eigenvalue Analysis
 H.12 Structural Modal Frequency Response Analysis
 H.13 Structural Direct Frequency Response Analysis
 H.14 Structural Response Spectrum Analysis
 H.15 Hybrid Frequency Time Domain Analysis
 H.16 Structural Nonlinear Analysis
 H.17 Strength Reduction Analysis
 H.18 Engineering Liquefaction Analysis
 H.19 Engineering Creep Analysis
 H.20 Euler Stability Analysis
 H.21 Nonlinear Vibration Analysis
 H.22 Heat Flow and General Potential Flow Analysis
 H.23 Groundwater Flow Analysis
 H.24 Geomechanical Staged Construction Analysis
 H.25 Reynolds Flow - Lubrication Analysis
 H.26 Beam Cross-section Analysis
I Batch Syntax Reference for Results
 I.1 General Commands
 I.2 Design Checking Results
 I.3 Displacements
 I.4 Velocities
 I.5 Accelerations
 I.6 Strains
 I.7 Stresses
 I.8 Status Parameters
 I.9 Forces
 I.10 Nodal Element Forces
 I.11 Element Forces
 I.12 Model Parameters
 I.13 Fracture Mechanics Parameters
 I.14 Number of Load Cycles to Fatigue Failure
 I.15 Temperatures
 I.16 Concentrations
 I.17 Maturities
 I.18 Degrees of Reaction
 I.19 Equivalent Age
 I.20 Fluxes
 I.21 Flows
 I.22 Internal Temperatures of Cooling Pipes
 I.23 Hydraulic Heads and Gradients
 I.24 Pore Pressures
 I.25 Dynamic Pressures
 I.26 Nodal Pressures
 I.27 Saturation
 I.28 Darcy Fluxes
 I.29 Shear Stresses
J User-supplied Subroutines
 J.1 Supplying the Source Code
 J.2 Programmer’s Service Libraries
 J.3 User-supplied Models
K Conversion from FX+ to DIANA
 K.1 Basic Settings
 K.2 Nodes
 K.3 Elements
 K.4 Reinforcements
 K.5 Properties
 K.6 Materials
 K.7 Coordinate Systems
 K.8 Functions
 K.9 Constraints
 K.10 Beam End Release
 K.11 Loads
 K.12 Sets
L Conversion from NASTRAN to DIANA
 L.1 NASTRAN Bulk Data Entries
M iDIANA Physical Properties Forms
 M.1 Geometry
 M.2 Mobile
 M.3 Wind and Water
 M.4 External
N iDIANA Material Properties Forms
 N.1 Model Code Libraries
 N.2 Linear Elasticity
 N.3 Mass
 N.4 Damping
 N.5 Static Nonlinearity
 N.6 Transient Nonlinearity
 N.7 Expansion
 N.8 Woehler
 N.9 Postprocessing Parameters
 N.10 Maturity Parameters
 N.11 Fluid Density
 N.12 Flow
 N.13 Detailed Groundwater Flow
 N.14 Aquifers
 N.15 Lubrication
 N.16 Cross-section
 N.17 Pore Fluid
 N.18 External
 N.19 Stiffness Adaptation
O DIANA Organization and Historical Notes
 O.1 Organization around DIANA
 O.2 Reporting a Problem
 O.3 Quality Assurance
 O.4 Historical Notes
Bibliography
Index
List of Figures
List of Tables